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A model of QED with conformally invariant gauge is considered. This gauge, 
being essentially nonlocal, is written in a local form by means of two nonphysical 
scalar fields. Using the BRST symmetry and the additional residual symmetry, a 
system of Ward identities is derived. These Ward identities are applied to prove 
the renormalizability of the model as well as to investigate the radiative correc- 
tions. A new class of conformal anomalies arises, connected with the absence of 
radiative corrections to the propagators including auxiliary fields. 

1. I N T R O D U C T I O N  

Some years ago conformal models of quantum electrodynamics based 
on nondecomposable representations of  the conformal group were proposed 
(Binegar et al., 1983a,b; Zaikov, 1985; Furlan et al., 1985). Although the 
difficulties connected with the pure longitudinality of  the conformally invari- 
ant photon propagator  as well as the construction of conformal gauge fixing 
were avoided, new problems appeared. The most essential problem is that 
the theory is self-consistent only in the free-field case (zero charge) (Petkova 
et al., 1985). The same problem also arises (Krasnikov, 1983) for the model 
proposed in Fradkin et al. (1983). The reason this problem arises is that in all 
these models it is assumed that the electromagnetic potential is transformed 
according to an irreducible representation of the dilatation subgroup with a 
canonical dimension. A consequence of the latter assumption is that the 
total photon propagator  is of  Adler -Johnson-Baker  type, i.e., coincides with 
the free-field one (Adler, 1972a,b; Baker and Johnson, 1979). To avoid the 
above-mentioned difficulty, Stanev and Todorov (1988) started from the 
nonvanishing conformal invariant current two-point Wightman function 
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and found from the Maxwell equation that the field tensor is also trans- 
formed with a nondecomposable representation of the dilatation subgroup. 
Then the conformally invariant two-point functions for the field tensor con- 
tain the log terms appearing in the perturbative theory. However, difficulties 
connected with the formulation of the theory in terms of electromagnetic 
potential appear in Stanev and Todorov (1988). 

In the present paper a modified model (Zaikov, 1986a) of conformal 
QED is considered in the context of a perturbation approach. We remark 
that the latter model is also not free from the difficulties associated with the 
above-mentioned models. Let us recall that this model is modified so that a 
generalization for the Yang-Mills theory is possible (Zaikov, 1986b). It is 
assumed (Binegar et al., 1983a,b ; Zaikov, 1985; Furlan et al., 1985 ; Petkova 
et al., 1985) that the electromagnetic potential is transformed according to 
a nondecomposable representation of the conformal group. For this purpose 
a dimensionless scalar field R(x)  is introduced as a fifth component of the 
electromagnetic potential. The latter permits the existence of a nonzero trans- 
verse part of the conformally invariant photon two-point function as well 
as the construction of a conformal gauge term in the Lagrange approach. 
In order to include the interaction with matter fields, it is necessary to 
introduce a second dimensionless scalar field S(x).  After integration over 
these auxiliary fields it is shown [see also Petkova et al. (1985) and Zaikov 
(1986a), where this integration is provided only on a formal level] that we 
have a nonlocal admissible gauge (without Faddeev-Popov ghost fields). As 
a consequence of the presence of these auxiliary fields, the Lagrangian obeys 
an additional BRST-like residual symmetry (Zaikov, 1986a; Todorov, 1987). 
It should be pointed out that the latter symmetry is an ordinary one, unlike 
the BRST symmetry, which is a supersymmetry (Becchi et al., 1976). The 
BRST-Iike symmetry is used to derive further Ward identities making it 
possible to prove also the renormalizability of the theory in the nonphysical 
sector as well as to investigate the radiative corrections of the two-point 
functions. It is shown that the two-point function FAR is free from radiative 
correction, although FAA has pure transverse corrections as in the ordinary 
theory. The latter points out that in this case we have a second-class confor- 
real anomaly, because (Binegar et al., 1983a,b; Zaikov, 1985; Furlan et al., 
1985) the conformal invariance strongly connects the transverse part of FAA 
with FAR. We recall that the first-class conformal anomaly arose with the 
log terms in FA~. Another conclusion from the Ward identities is that Fss 
is also free from radiative corrections. 

These two types of conformal anomalies break down only if the perturb- 
ative sum gives the Adler-Baker-Johnson photon propagator. However, in 
the latter case, as mentioned above, the electromagnetic interaction breaks 
down, too. 
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A similar two types of conformal anomalies appear in the pure Yang- 
Mills theory (Zaikov, 1991) in conformal gauge. However, in the QED in 
conformal gauge an additional BRST-like symmetry appears. The BRST- 
like transformations are nonlinear if fermion fields are included. The price 
for their linearization is the introduction of an infinite set of composite fields. 
In order to study the consequences of the BRST-Iike symmetry for the 
renormalized Green's functions, it is necessary to prove the renormalizability 
of the model also in a nonphysical sector where nonzero sources of these 
composite fields are present. 

The paper is organized as follows: In Section 2 the model proposed in 
Zaikov (1986a) is described. In Section 3, BRST (Kugo and Ojima, 1979) 
and BRST-like symmetries (Zaikov, 1986a; Becchi et al., 1976) are consid- 
ered. These symmetries are applied to derive a system of Ward identities. 
Additional Ward identities as a consequence of the BRST-like symmetry 
arise here. In Section 4 these Ward identities are used to prove the renor- 
malizability of the theory and to investigate the radiative corrections of the 
two-point functions. 

2. CONFORMAL GAUGE IN QED 

To set the notations, we give a brief review of the model (Zaikov, 
1986a). The Lagrangian is constructed by adding to the singular Lagrangian 
of massless QED 

~((2QE D : - -  4 1 ~  uvrl-L" ~uv + gt(iO-eA)~g (2.1) 

(where Fur= OuA~-0~A~,) a conformally invariant gauge-fixing term con- 
taining two nonphysical massless dimensionless scalar fields R and S: 

i , +a_ + v  (DS)2+F,  ~ c3~R ~?vS (2.2) 2'GF = ~3 Au DR 8 (DR)2 2 

Here a is a gauge-fixing parameter and v is an arbitrary real parameter. It 
can be checked that (2.2) is a conformal invariant if all the fields except S are 
transformed according to a representation of the conformal group defined by 

@q)(x) = - i ( d .  + x ~ O~)Op(x) (2.3a) 

s f  ~,q)(x)=i[2x~,(d.+x~ O~)-xZ Ov+2ix~Zv~]Op(x) (2.3b) 

where qb=A, R, V; 9,  ,~,,, and Z,~ are generators of dilatations, special 
conformal transformations, and the spin part of the Lorentz trans- 
formations, respectively, and d,  is the corresponding (canonical) dimension 
(dA t dR=0, 3 = , dv = 5). The field 5' is transformed according to the following 
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conformal law: 

Zaikov and Zlatev 

N S ( x )  = - i ( x  r OrS(x) - 1) 
(2.4) 

Ju{~,S(x) = i(2x~,x ~ Or - x 2 cg~,)S(x) - 2ix,  

Let us note that the field A is transformed under the "basic" (homogeneous) 
conformal law (2.3), but the nonhomogeneous conformal law (2.4) for S 
makes it possible to construct a conformally invariant gauge fixing in a local 
form. 

Let us consider (for now on a formal level) the functional integral 

~ ( A , h , H ) = f D R D S e x p [ i f d 4 x ( 2 ~ G v + h R + H S ) ]  (2.5) 

where h and H are sources of the nonphysical fields R and S, respectively. 
In the case a = 0 the formal integration over R is extremely simple: 

.~(A, h, H)  

=fDSexp{i[d4x[V-(f-lS)'+HS]}d [_2 x ' H 6(~ [] O"A , -O"F , , ,  OrS+h) 

(2.6) 

where 

1 
D2(x) = - - -  ln(-p2x 2 + ie) (2.8) 

(4re)  2 

is the Green's function for the equation V12f=0, p is a parameter with 
dimension of mass, and the notation 

~ ( x )  = ~' [] O"A,,(x) - 0 v S ( x ) ( g ,  vl-1 - G G ) A " ( x )  + h(x)  

Then the Faddeev-Popov determinant 

A = f D A  ,~(A +cgh, h, H)  

does not depend on A and consequently (2.2) is an appropriate gauge fixing 
for quantum electrodynamics. In a general gauge (a 4=0) one obtains 

~ ( A ,  h, H)  

(2.7) 
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is introduced. It is easy to check that this is an appropriate gauge, too. Let 
us note, however that the integration over the field R breaks the conformal 
symmetry in the case a 4=0 because a parameter with dimension of  mass 
appears. In the case a = 0  one may consider (2.6) as a formal expression 
only. Indeed, let us write the Green's functional 

Z(j, h, H, ~, Z) 

=fDAD~D~exp[ifd4x(5~QEO+jUA~+2~+~X)]~(A,h,H) 

(2.9) 

Inserting (2.6) into (2.9), one can see that the gauge-fixing condition is too 
complicated to be solved explicitly and can be used in calculations only 
if one returns to the integral representation (2.5). So, in both cases we 
shall understand the (nonlocal) gauge-fixing functional ,~-(A, h, H )  as an 
integral (2.5). 

Turning to a perturbative calculation of Z, one observes that the results 
are incompatible with the simplest assumptions about the conformal proper- 
ties of  the quantum model. The starting point for a perturbative treatment 
is a system of free fields. The set of  the two-point functions, or, in terms 
of  functional integration, a "measure" in an appropriate functional space, 
contains all the essential information about this system. The classical Lag- 
rangian of  the free bosonic fields 

• f , ( 2 ) l •  _ •  ~ v  I V B t.~j--4~.~,vl. +50~'Au DR+a--([-1R)2+ ( [ - ' IS)  2 
8 2 

(2.10) 

is not invariant with respect to the representation (2.3), (2.4) of the confor- 
mal group. However it is invariant with respect to a "nonbasic" conformal 
law (Zaikov, 1985; Petkova et al., 1985) for the fields A, R. In order to 
preserve the invariance at the quantum level, one must choose a proper way 
of integration when calculating the free bosonic Green's functional 

(2.11) 

The invariance will be lost in the case a r  if one integrates over R as in 
(2.7) proceeding to a nonlocal gauge fixing. Let us remark that the field R 
has been introduced as a fifth component  of the potential . ~ =  (A, ,  R). 
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Inverting the differential operator ~ in the bilinear form 

~, a (DR)2] f d 4 x , ~ c r N d = _ f d 4 x [ - ' z u ~ J - ' O ~ t ,  u v - ~  A u + ~  

one obtains the matrix of propagators. As a reflection of the invariance of 
2~ ) ,  the two-point functions are invariant with respect to a representation 
of  the conformal group which leaves the vacuum invariant and transforms 
the free fields A and R according to a nonbasic conformal law. The genera- 
tors/(~ of special conformal transformations in this representation obey the 
following commutation relations with the fields A and R: 

[A v(X), if;u] = i[2xu(de + x~ O~) - x 2 8ulA v(X) 

- 2x~(Z,,~)~Av(x) + 2ig u vR(x) 

JR(x),/( ,]  = i(2xux V B y - x  20u)R(x)  

(2.12) 

where (Xv,)P~ = i( 3~gw - 6{gvz). 
The two-point function of the free field S is (1 ~iv)D2 and, as mentioned 

above, it contains a parameter with the dimension of mass. It is conformally 
invariant if 

[S(x), DI = - i ( x  ~ a~S(x) - O) 

[S(x),/(u] = i(2xu x ~ 8 f -  x 2 ou)S(x ) -2ixu~l 
(2.13) 

where/)  is the generator of dilatations and 0 is a constant operator with the 
following properties (Sotkov and Stoyanov, 1980, 1983): 

(ot,~fo) = (o1,~71o) = o 

<OlS(x),~lO> = c o n s t  

The two-point functions of the bosonic fields are also conformally 
invariant with respect to another representation. It transforms the fields 
according to a law coinciding with the one for the classical fields [see (2.3), 
(2.4)]. The generators D and K~ of dilatations and special conformal trans- 
formations do not annihilate the vacuum state, 

OlO)> = UlO) :/:0 

K, IO) = rIO) r  
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Here U and V, are operators obeying the commutation relations 

IS(x), U] = i(1 - q) 

IS(x), V,] =2ixu( ~ -  1) 
[Az (x), UI =0  (2.14) 

[A~ (x), V~I = 2igzuR(x) 

The field R commutes with U and Vu. It is obvious that the generators/) ,  
/(~ of the nonbasic representation may be written as 

f i = D - U  

It is known (Zaikov, 1985; Petkova et al., 1985) that the two-point 
function of the free A is not purely longitudinal. It is clear that there is no 
contradiction between this statement and the conformal properties of the 
free fields. Unfortunately, because of two kinds of anomalies, the simple 
conformal properties are lost when perturbative corrections are taken into 
account. 

3. RESIDUAL SYMMETRY AND WARD IDENTITIES 

It is convenient to redefine the fields A, R: 

A~, ~ 1_ Ap, R ~ veR 
e 

in order to make symmetry transformations independent of the parameters 
e, v. Let us remark that the conformally invariant Lagrangian (rewritten in 
terms of the new fields A, R) 

1 + v  a' 
,~QED --~- ~::~GF . . . .  F~,vF ~'' ~3~,A ~ ~ R  + - -  (V1R) 2 

4e 2 2 8 

v 
+ -  ( D S ) 2 +  vF~,v O~R OrS+ ~ t ( i ~ - A ) v  (3.1) 

2 

where a'=v2e2a, is not invariant with respect to the transformations 
A -~ A + 0A, because of the corresponding gauge fixing. However it obeys 
some residual symmetry, which becomes clear if a free Faddeev-Popov ghost 
field Lagrangian is included: 

v 
LfGn=~ - f/ D2r/ (3.2) 
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where r/is a dimensionless scalar Faddeev-Popov ghost field transformed 
under the same conformal law as the field S. Let us remark that for conveni- 
ence a generalized free ghost field is introduced (Zaikov, i 986a) here ([~2T] = 
0) instead of the free ghost field in the ordinary QED. 

Then it is easy to check that the Lagrangian (3.1) is invariant with 
respect to the following BRST transformations: 

3B = 3Z art(x) 

a r  = - i  3;~ , ( x ) r  

3 ~ = i  3Z ~t(x)fl(x) 

3 R = 3 S = 3 r / = 0  
I 

30 = - ~ 6 Z  g (x )  

(3.3) 

~k(x) defined by 

A Ck = - i  Ae  Ck+ j(x) 

Alpk=iAe ~k+l(x), k=O, 1 , . . . ,  

The explicit form of the lowest Ck is given by 

= r  r  = 8 r  r  $ 2 r  i R e ,  r 

r = $4r  - 3 iRSr  - ] R 2 r 

r 1 6 2  r  
(3.4a) 

r = $ 3 r  3i R S r  
2 

(3.5) 
r = $ 5 r  R S 3 r 1 6 2  . . . .  

where 3). is an infinitesimal odd Grassmann parameter. 
Because of the existence of the nonphysical fields, the Lagrangian 

o'~eff = ~QED -[- ~ G F  q'- ~ G H  

obeys also the following residual (BRST-like) symmetry: 

a G  = a E  GS(x) 
AR=0 

a s  = R(x)  
2 (3.4) 

A r  = - i  Ae S ( x ) v ( x )  = - i  Ae r 

A ~ = i A e  S(x)Kt(x)= i Ae (/j(x) 

At/=Af/=0 

where Ae is an infinitesimal (even) parameter. 
The transformations (3.4), like the BRST ones, are nilpotent only in 

the bosonic sector. However, in the fermionic sector this is not the case. 
Then for our purpose it is convenient to introduce composite fields Ck(x), 
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We remark that the Lagrangian (3.1) depends on the fields R and S only 
through their derivatives and consequently it is invariant also with respect 
to the following transformation laws: 

& R(x) = ,5 e, 

&A = & S  . . . . .  AI~'=AI~I = A l ~ j = 0  

a2S(x) = k &  

A2A =AeR . . . . .  AeV/=Ae7) = 0 

(3.6) 

where Q2 are constant parameters. 
It is not difficult to check that with respect to the transformations 

(3.6) the composite fields (3.5) obey the following transformation laws: 

ik(~ - 1 ) 
AI I[lk = - A ~ , I  I l lk-  2 

4 

i k ( ~ -  ~ )  _ 
AI~=AgJ ~P~-2, k = 2 , . . .  

4 

A2~&=As2 kCk- i ,  A2~k=As2 k ~ - ~ ,  

(3.7a) 

k = 1 . . . .  (3.7b) 

Now, let us consider the following Green's functional: 

Z(j ,  h, H, Z, 2, tck, ~k, p, P) 

= exp G(j, h, H, Z, Z, irk, ~?k, P,/3) 

k=l 
(3.8) 

Taking into account that 5('err is invariant with respect to the BRST trans- 
formations (3.3), the BRST-Iike transformations (3.4), and the trans- 
formations (3.6), we derive the following Ward identities: 

f~A...~Oexpifd4x{yoff+jA+'''+pO} 

x fd4x(jc~A +h~R+Hr~S+ ~(/tr + 3 
+ 3r + ~k3~k + 3flp+ ~&l)=O (Y9a) 
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;~A. . .~ f lexpi fd4x{Nfe fr+J A+' ' '+pr l }  

x fd4x(jAA + HAS+ A~Z + ZAg, + A O~X~ 

+ fkA~k + AOp +/SA r/) = 0 (3.9b) 

f @A, . . . .  @0 exp i f d~x{~efr +'.  �9 + Oft} 

x f d4x(hAl R + A1 (tkZk + ZkA1 gtk) = 0 (3.9c) 

f ~ A , . . .  ~fl exp i f d4x{~eff+jA +... +PO} 

(3.9d) 

where summation over repeating indexes k = 0, 1 . . . .  is implicit. The analysis 
of the Ward identities (3.7) is simpler for the one-particle irreducible Green's 
functions: 

F(A,R,S, ~, r 77, O,Z~ 

= -iG(j, t7, H, Z, Z, Z,, Z,,, P, P) 

- id4x(jA + hR + HS + OZ + 2~ + OP+ Ptl) 
3 

(3.1o) 

Now, taking into account that 

8F fiF 6F 
j " = - - - ,  h = - - -  H = - - -  

6A, 6R' fiS 

6F 6F fiG 5F 
- -  - -  _ _  - - g  - -  

2=8~ X= 80' 8Z. 8Z. 

8F 8F 6G 6F 
P=Sq' P= 8# -i82.  8Z. n = l , 2  . . . .  

(3.11) 
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we rewrite the Ward identities in the following form: 

f d4x{IOu ~F +i(~F 

k=~ 6ZK Zx+2k q(x)+ ~R-~q)=O (3.12a) 

-ie ~ - 6F + 6F 
k:l J 6Zk+IZk =0  

~Zt 

(3.12b) 

fd4x[ ~F+i +i ~ k(k-1)(f~k 8F 
[~R 2 ('~2qt- ~z~) 4k=2 8Zk-2 + 3ZS~z Zk =0  

(3.12c) 

d x | - - - , ~ l ~ / . t - @ . ~ i -  2 k ,~k ~F Zk : 0  (3.12d) 
L6s k=2 ~2k-| ~Zk 1 

The fields R and S in (3.10) are interacting fields, which is not the case 
for the ghost field included in (3.12a). Moreover, in (3.12b) a term that is 
nonlinear with respect to F appears, as in the Slavnov-Taylor identities in 
the Yang-Mills theory. 

4. R E N O R M A L I Z A B I L I T Y  OF THE QED IN 
C ONF OR MAL GAUGE 

Throughout  the previous section we assumed that the dimensional regu- 
larization is carried out. This means that the divergent terms arise only in 
the limit D ~ 4. We remark that the effective Lagrangian and the measure 
are invariant with respect to the BRST transformations (3.3) and the trans- 
formations (3.4) for arbitrary D-dimensional space-time. Consequently, the 
Ward identities (3.10) are satisfied for any D-dimensional space-time. The 
latter allows us to provide a gauge-invariant minimal renormalization which 
consists of  the subtraction of  the terms divergent with D ~ 4. Let us consider 
first the bosonic part of  the effective action : 

FB = Fl~= r =0 
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Taking into account that the ghost field is free and using ( 3 . 1 2 a ) ,  one obtains 

Ou ~FB+v  1_.32R = 0 (4.1a) 
6A, 2 

and the Ward identities (3.12b)-(3.12d) yield 

6A u 2 8S I 

f d4x 6Fn=0 (4. lc) 
8R 

f d4x 3 F " = 0  (4.1d) 
~S 

It is clear [see equations (4.1c), (4.1d)] that FB may be expressed in terms 
of the field A and the derivatives OuR, O,S of the scalar fields. Then solving 
(4.1 a), (4.1 b), one obtains 

F , =  C d4xl v- (DS)2+ 2 0uA,, D R } +  F~(Fuv, OuR, OuS) (4.2) 
3 k2 

It follows from (4.1b) that there is an expression for F~ in terms of Fur, 
fuv = OuR OvS- OuS O~R, and the derivative OuR. Looking for divergent terms 
in F~, one finds that the bosonic counterterm, which must be added to the 
Lagrangian, is a linear combination of the following quantities: 

FuvFUV, Fu~ fu~, fu~ fuv, Ou R OUR 

OuR OUR DR, t-IR DR, (O~R OUR) 2 

Let us remark that S is a quasifree field: 

g2F" , = vI-128(x-y) (4.3a) 
6S(x) ,~s(~ ) o 

~2F" =0 (4.3b) 
3Au(x) ~S(y) o 

62Fn =0 (4.3c) 
~R(x) ,~S(y) o 

(10 means A = R = S= ~t = ~7 = 0). The field S is an interacting one, but its 
propagator coincides with the free propagator. 

Writing down all admissible counterterms containing fermionic fields 
and taking into account the constraints on them, following from the linear 
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Ward identities (3.12a), (3.12c), and (3.12d), one finds that the sum of the 
countertenns can be written as 

/ "4  ( Z 3 - 1  uv a '  
i c t  | d  x~----T-T-F~,vF -t-(Z,-l)O(i~-A)lll-k-(Z4-1 ) ( [ ]R)  2 

3 ( 4e 8 

+ (Z5 - 1) vF, v OUR OrS+ �89 Y6 OgR OUR + Y7 O~R O'UR DR 

+ Ys(OuR 8~'R)2+ rgfuvf~v+ Y, ogZ gRvt+ r,, (t OSgt 

+ ~ [gk(R, S)2kv+g~(R, S)gt2k]l 
k=l ) 

(4.4) 

where Z~, Z 3 , . . . ,  Zs, and Y6 . . . . .  Y~ are divergent constants and 
gk(R,S) and g~(R,S) ( k = l , 2 , . . . )  are functions with divergent 
coefficients. The constant Y6 is dimensional and the renormalized Lagrang- 
ian is not conformally invariant. Introducing a loop expansion parameter A,, 
one can write 

Zi= 1 + ~()~), i= 1, 3, 4, 5 

Yk= ~(;0, k = 6  . . . . .  11 

As usual, f (X) = ~(X') means limx~o 2-"f(A,) = 0 andf(X) = C0(A2) means that 
t,q,-'f(;,)I remains bounded when ~ ~ 0. 

The functions gk(R, S) obey two systems of equations: 

Ogk 
8R 

O_ggj_ = O, 8g2 _ 0 
OR OR 

- -+ik(k-1)gk_2=O,  k = 3 , 4  . . . .  

(4.5) 

and 

g! 

OS 
m = 0  

•gk - - - -kgk_l=O,  k = 2 , 3  . . . .  
OR 

(4.6) 

The corresponding equations for g~(R, S) may be obtained by complex 
conjugation. 

The nonlinear Ward identity (3.12b) yields additional constraints on 
gk, g~. Following the recursive method (see, e.g., Itzykson and Zuber, 1980, 
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p. 599), we introduce a bilinear operation 

FI*  F2 = t d4x( 8F1 5Fz 

, J  \ [~ I]f 5 2 1  

and a linear operator 

L(F)= d4x ,,~k 5F 
1 82k+ 1 

The identity (Yl2b) may be written as 

F ,  F + L ( F ) = 0  

(~FI 6F2 t 
8ZI ~ /  

+ Zk 
6Zk + 1 

Zaikov and Zlatev 

Denoting by F ~ and F 1 the first and the second terms, respectively, in 
the loop expansion of F, one writes 

F = F ~  1+o(~) 

Equation (4.7) is satisfied by the classical action 

z :  f d4x  off 

and therefore F 1 obeys the linear equation 

I ,  F I + F '  �9 I + L ( F ' ) = 0  (4.8) 

It is enough if the one-loop counterterm llct obeys the weaker condition' 

t , i +  L(F~t) = 0(~,2) (4.9) I �9 Fct + Fct * 

Inserting the expression (4.4) for llt into (4.9), we find constraints for the 
one-loop quantities Y~11), g~l), g~(l): 

Y~11)=0 , g~l) =g*(~ = const [=~(,~)] (4.10) 

and recursive relations 

c3g (t) 
g(l) (R, s ) -  sg '(R, s)+ i k+ 1 R (R, S) 

2 8S 

--g~l)f~k(R, S) = ~(,~2) 
(4.11) 

8g*(O 
~*(1)t-- S)_Sg~( ' ) (R,  S) i R (R, S) ,~k+ 1 ~,/~ - - - -  

2 OS 

-~*(~)~2.~o S ) = ~ ( ~  2) ~gl k ~Lx, 

(4.7) 
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where fl~, f~'  are functions defined by the equations 

V,~=f~(R, S)~,, ~ = n ~ * ( R ,  S ) ~  (4.12) 

The crucial point in the recursive procedure is whether the one-loop 
renormalized action /1 = l + l l t  obeys the Ward identity (4.7). Introducing 
the notations 

cok = f2k + g(k I), co~ =f2/~ + g,(l) (4.13) 

and taking into account (4.4), (4.1 1), one can write 

(" (Z ~ ^ a' 11= | d4x~-22y F~F~  + Z~I)O( iO- A)l~ + Z(41) ( O R  2) 
3 ( 4e 8- 

I y(6,) +Z~J)vF, vS~'R8 S+~ O.RS'R+ Y(71) O~,Rg"ROR 

+ Y~')(3uR 6~PR) 24- --gV(1)Ju~ac cu~+ ~loV(')'-v, ~RN 

+ ~ look(R, S)2kV+co~(R, S)0Zk]} (4.14) 
k = l  

where Z~ '~, ~37(I),..., Z(s I), and Y(6 1~, . . . ,  Y~o ~ are one-loop renormalization 
constants. It is easy to check that (4.14) is a solution of  (4.7) if 

o~(R, S) = f ~  + C(~)= S +  C (~), C(I~ = const 

co~+ ,(R, S) = coi(R, S)co~(R, S) _i~. R ~S-8C~ (R, S) 
(4.15) 

(9 ~(R,  S )  = g2~ + C (~) = S +  C (~ 

co~+~(R, S)  = ~o~(R, S)co~( R, S) + i R &o~ ( R, S) 
2 8S 

The solution is 

cok(R, S) = f~(R,  S +  C m) 

co*(R, S) = Y2~(R, S +  C (1)) (4.16) 

where C ~ does not depend on the fields. It is not difficult to check that if 
C(I)=)~r (r does not depend on ~), then equations (4.11) are satisfied. So 
the continuation of  the recursive procedure is possible (to any order in 
the expansion on 3~) and we find that the Ward identities guarantee the 
renormalizability of the model (also in the case when sources of  the com- 
posite fields ~'k, Ok are present). There are 10 renormalization constants, 
Z j ,  Z 3 ,  . �9 �9 , Z s ,  Y6 . . . . .  Yi0, and C. The renormalized effective action F re" 
obeys the Ward identities (3.12). 
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Let us now consider the consequences of this statement for the Green's 
functions. By differentiation of (3.12a) with respect to r/(x), at(y), and u2(z), 
we derive the well-known Ward identity: 

a3Fr~ a~(z) 0 
8. aA.(x) a~(y)  

( a2F .... a2F~n / 
a4 (x -y )  (4.17) =i  a4(x-z)  6~'(x) aV(y ) a~/7(x) ag(y)/Io 

The same result can be obtained also from (3.12b) by differentiation with 
respect to S, ~, and g and replacing the derivatives 

a 3rren a 3rren 

aS(x) 60(y) av,(z)' aS(x) a0(y) az,(z) 
with these determined from equation (3.12d). 

Now differentiating (3.12b) with respect to R and S, we find 

a 2 r  ~ 1 a2F r~ 
8, aAv(x) OR(),) 0 q- =0 (4.18) 2 aS(x) aS(y)o 

Then, taking into account (4.3a), we conclude that the radiative corrections 
in the two-point vertex FAR are also absent. 

Now we are able to conclude that if the radiative corrections appear in 
the two-point photon vertex function, then, according to (4.3a) and (A.2) 
of the Appendix, a second-class conformal anomaly appears. We recall that 
we have a first-class conformal anomaly when the coefficient c in (A.I) is 
equal to a sum of log terms. In this case, if 

a=b=c (4.19) 

then the vertex (A.I) is invariant with respect to the representations, 
which are nondecomposable also with respect to the dilatation subgroup 
(Dell'Antonio, 1972; Furlan et al., 1985 ; Zaikov, 1988). However, according 
to (4.5), here a = b = l  and consequently here a second-class conformal 
anomaly arises connected with the transversality of the radiative corrections. 

5. CONCLUSION 

We have considered a model, proposed in Zaikov (1986a), of conformal 
QED with two auxiliary massless scalar fields. It is shown that in addition 
to the ordinary BRST symmetry, the model obeys a residual BRST-like 
symmetry as well as a symmetry with respect to translations by constants of 
the auxiliary fields. Ward identities corresponding to these symmetries are 
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obtained, and using them, it is shown that the model is renormalizable. 
There are ten renormalization constants: nine of  them are multiplicative and 
one is additive. Five types of  counterterms arise which are not present in the 
initial Lagrangian. One of the renormalization constants is dimensional; 
hence the conformal invariance of  the renormalized Lagrangian breaks 
down. It is shown that the radiative corrections of  the two-point vertex 
function of the electromagnetic potential are purely transverse, although the 
radiative corrections of the two-point function including the auxiliary field 
R are absent. The latter points out the existence of a second-class conformal 
anomaly. 

APPENDIX 

Let us write down the two-point vertex function for the five-component 
potential d = (A, R) : 

( (a/4)(P2)2 (ia/2)p~P2 ~ (A.1) 
F~"~'=\-(ib/2)p,,p2 c(g,,vp2-p, pv)J 

where a, a, b, and c in general are arbitrary functions of  the momentum. We 
remark that (A. 1) is invariant with respect to the conformal transformations 
(2.12) only if 

a = b = c = const (A.2) 

(Zaikov, 1985; Furlan et al., 1985). 
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